Math 436 (Spring 2020) - Homework 5

1. Chapter 3: 25

2. Let $X \times Y$ be the product space of topological spaces X and Y. If $A \subseteq X$ and $B \subseteq Y$, prove that
(a) $\overline{A \times B}=\bar{A} \times \bar{B}$;
(b) $(A \times B)^{\circ}=\AA \times \stackrel{\circ}{B}$.
3. If X and Y are discrete spaces, then the product space $X \times Y$ is discrete.
4. If X and Y are indiscrete spaces, then the product space $X \times Y$ is indiscrete.
5. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. Consider the formula

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\sqrt{d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2}}
$$

for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $X \times Y$. Prove that D defines a metric on the set $X \times Y$.
6. (Bonus Question) Show that the topology on $X \times Y$ determined by the metric D given in Question $\# 5$ is exactly the product topology on $X \times Y$.

